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The nonaxisymmetric problem of elasticity theory for circular cylindrical shells loaded 
along the endface surface Fz is considered. By using the method of trigonometric series 

expansions, homogeneous solutions of closed (I, : z - & 2) and open (F, : g = -!- Cpo) 
shells are studied as their thickness decreases. 

It is proved that the state of stress of a closed shell includes four parts : (1) an elemen- 
tary state of stress penetrating into the shell without attenuation, (2) a slowly attenuated 

principal state of stress, (3) a rapidly attenuating state of stress (edge effect of shells), 

(4) a boundary lay& type of state of stress. 
In the case of an open cylindrical shell subjected to a periodic loading with period I,, 

there are states of stress of types (1). (3) and (4). The rate of attenuation of the edge 
effects hence depend essentially on the number of the term of the trigonometric series 

as well as on the quantity 1,. In both cases asymptotic expansions are presented of the 
components of the states of stress and strain. 

On the basis of the exact solution of the three-dimensional problem, a refined applied 
theory is given for a circular cylindrical shell, which is intended to reduce the stress from 

the endface surface Fz. Applied theories reducing the stresses from the cylindrical por- 

tions of the shell boundary were considered earlier in [l]. 

1. Construction of homogeneou: rolutionr. Let us consider the arbit- 
rary strain of an elastic isotropic shell bounded by coaxial circular cylinders r1 of radii 
R, and R, (RI < R,) and an endface surface I’s. Let us assume that the stress result- 
ants applied to the boundary r2 form a system statically equivalent to zero, and the 
boundary r1 is stress-free. As the initial relationships let us take expressions for the 
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displacements and stresses obtained in [l] on the basis of Lur’e’s symbolic writing r2] 

u = Rs (.&,‘A - t--‘Z&V - EZ,C + *) 
u = R, (~--.7&A -+- ZY’N + *) (I.11 

w = R,{Z,A + [EZ,’ + 2X2”] c +:*> 

ap = 2Gp { [z, (v~E,-~ - 1) - E-1Z,‘] A + (E-“Z, - FZ,‘) d, N -f 

-f- [(1- x) Z” - EZ,‘] c -I- *I 

z Ty, = Gp (2 (- C2Zv -j- E-lZv’) &A + 

+ [Z, (2v‘v - 1) - 2E%Z”‘] N -Z&J $ *> 
* 
2) 

z = Gp (2Z”‘A - g-c’Z,d,N + [Z, (v2E-’ - 2E) + 2xZ,‘] c + *> 
(1 

fz 

LS~ = 2Gp {LA + [(a + w) Z, + EZv’] C + *) 

IT zq = Gp @?$-“Z&A + Z,‘iV + (2&Zv + Z,‘) a,C -/- *(r> (1.3) 
a, = 2Gp ((--- v%-~Z, + k’Z,‘> A + (- YZ, + E-‘Z,‘) d2N + (I- x) Z,G + *> 

Here m is the Poisson number, A, N, C are arbitrary functions of 5 and cp, .& 6) 
the cylindrical operator function (see e. g. [I]), R, the characteristic dimension, and the 
asterisk denotes the analogous expressions obtained by replacing Z, (E), A, N, C’ by 

the functions Xv (E), A*, N*, C*. 
Let us extract the class of homogeneous solutions out of (1,1)-f 1.3), i. e. solutions for 

which there are no stresses on the boundary rr 

CJ, = 0, z,Cp = 0, T, = 0 when r = RI, R, (1.4) 

Substituting a,, ZriP, ‘G,~ from (1.2) into (1.4), we obtain a system of homogeneous 

differential equations of infinitely high order in the unknown functions A, iv, . . c* 

d&t + d,,N + . . . + d,,C* = 0 

. * *,. * 1.. * . . (1.3 

&A + c-&v + . * . + c&c* = 0 

where the dik denote appropriate operators. Following [3- 51, it is possible to take as the 

solution of (1.5) 
A = A,,‘? (5, cp), N = AskY (5, cp), . . .t C* = AaY (5, cp) (1.6) 

The operators Ai, here are cofactors of elements of the kth rows of the operator- 

determinant Q of the system (1.5) ; Y (5, q) is a stress function satisfying the equa- 

tion Q Y (5, 'p) = o (1.7) 
Equation (1.7) determines a countable set of solutions yk (5, q), and their correspond- 

ing functions A,, Nk,, . . ., ck* form homogeneous solutions for a circular cylindrical 

shell after substitution into (1. l)-(1.3). 
Evaluating the determinant of the system (1.5). we obtain 

&i = ~~~k’(~l) R,fi) (&) --v@(&) &‘“‘(~lf] P 

f(O) (x) = f (z), f(‘) (x) = df (5) / dx, 5, = pR, / R,, E, = pR2 /‘R2 (1.9) 
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Here J, is a Bessel function of the first kind, K, a Weber-Schlaeffli function of the 
second kind, Phj,ip and Pg are expressions of the following kind: 

(I .10) 

Now putting I& = Jf@. and taking into account that the operator Q is au entire 
function in this case of not only B2, pa but also E (o = 0.5 In (R, / R,), Dz = p2+ 
f ds2), we represent the right side of the relationship (1.8) as a power series in 8’. 
Calculations yield co 

Q = es 2 es*& (P, p’) (1.11) 
X=0 

Q, = 2bop4, Sz, = b, (8 - 4D2) p4 + 16is (D2 + 1) p4 - “Is (D4 + D2 + p2)’ 

Q2, = V5D10 -+ 112/45D8 - (32/4,x + 1ef45)D6p2 + (52/15bi, - 32/e) D4p4 + Q,* 

a3 = - *08/e46D'2 + Q,* (Zb, = x2 - 4x) (1.12) 

Here 8,” and sZ,* are lower order operators than those written down. 
If expansions of the quantities Ljk in powers of p are utilized 

Loo - pb,* - ‘l,p3bl + ‘llep5 (b, ch 2~ - ‘f,b,) + . . . (1.13) 

L,, = - b,*v2 I p + “lzp ( ‘lab1 - a0 sh 2e - b,* ch 2~) + 

+ ?fsp3 (b,* sh” 2~ - ?‘2 bI ch 2~: + b,) + . . . 
LoI = e-‘{ a0 - ‘lap’ (b,* sh 28 -i- l/2 bd -f- ‘/IS p4(h ch 2~ + eebI - ba) f. ..I 
Llo = eE( - a0 + 1/2p2 (bo* sh 2e - llzbl) + l/up4 ($1 sh 2e + rrEbI - bB) +...} 

(a0 = ch 2ev, 6,” = sh 2ev / v 

b, = !sh 2.5 (k + Y) I (k + Y) -sh28 (k - v) ,’ (k - $1 l/ Y 

then we obtain by substituting (1.13) into (1.8) 

Q (8, a,“, p2) = lie (ii+, + a,‘) sin 28,~ (sin2 2@. - C?,~ sh2 2s) + 

+ pw (1 + da2) u, (6 8z2) + P”U, (E, dz2) + . . . (1.14) 

where the entire functions u, (E, da2) and u2 (a, ds’) do not vanish for 8,” = -1 and 
a2=o 2 * 

By virtue of (1.10) the operator Q can be written as 

Q = p5{ Q*LooA,2A22} + p4( 2 Q* [LIoec} (1 i- xy2e29 AZ2 i- 

+ L,,e-f (1 + xy2e-2E) AI21 + 8x(sh2 2e (L,,@A, + &IebcAI) y2} + 

+ p3{z Q* [2LII (1 + 2xy2 ch26 + x2y4) - Looy2 ( AlA2 + 2 sh22e)l - 

- xL,,,( (y” ch 2~ - 2y2 + ch 2~) (2L,,’ - 2Loo2y4 + L,12 + L,02 - 2 ch 24+ 

+ 2y2LM2 (A, A, + 2sh2 2e) + (y4 - 1) sh 2~ &,,” - &,2 - 2~‘) X 

x ((Lo12ea~ --L,,2e-26)1)-2x sh”28 ILoo-SL~~~2-(Q + ~x)L~~Y~J) + . . . (1.15) 

where 

Q* = Lo$A1 A, f L,$ A, + Lo12Al f L112e- eFasAI - e2e A, 

A 1 = 1 - y2e2e, A, = j - yZe_2c 
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Finally, the operator Q admits of yet another representation which is specified by the 
appropriate expansion of the quantities Li, 

Q = (2&p / 8 5 (28) “kQr (0*2, p*y (1.16) 
where k=O 

Q. = D,3 s’n D, (sin2 D, - D,2) (D,” = (?JE)2 D2, p* = 2&p) 
Q1 = sin” D, {pe4 [(--“‘is + 4x + x2) D,-” - “/4D,-1] + 

+ pe2 [(l/z - 6%) D,-’ + ‘/$*I + D,> + 

+ sin2 D, cos D, (pe4 [(--“is - 3%) Dee2 - ‘is] -t_ 

c P*? [(- 1/z + ax)-+ 1j4D*21) + sin D, {pe4 I(‘/, - 3%) D,? + “lzD,l + 

+ pa2 [ (- “i2 + 2%) D, - 5/4D*‘] - D,” - ‘/3D,5) + 

-f ~0s D, {P*” [(““is - 2%) + 1/z&,2~ + pe2 [(-‘/a + 2%) R+1/,,D,41j (1.17) 

Let us study the singularities in the behavior of the homogeneous solutions by using 
the method of trigonometric series expansions. In the case of a finite hollow cylinder 

(I72 : z = f i) the stress function Y, (j, cp) can be sought by putting 

(1.18) 

For a cylindrical panel (I?, : cp = & cpo) subjected to a periodic loading with period 
I,,, we will seek the stress function yI, (5, (p) in the form 

The Hki and H,i* in (1.18), (1.19) are arbitrary constants, and the 3Lh.i and /c,~ 
some parameters. 

Substituting (1.18) and (1.19) into (1.7). we obtain characteristic equations in A,,; 

and kni : Q (F,- k2, Al;:) = 0, Q (E, kni2, - nm2) = 0 (1.20) 

2. Anolyala of the roots of the characteristic equation of a 
closed cylindrical ahell. Let us analyze the roots of the first transcendental 

equation in (1.20) as E--+ 0. Let us first examine the case of small k (k ( E-‘/Z). Let 
us seek the roots which have a finite limit as E --f 0 . If such roots exist, then their 
limit values hlCio are evidently found from the limit equation 

[E-“Q (e, -k2, hLi02)] ] e=,, = 0 

which has the form 2b,htiio4 = 0 in the case under consideration. We hence conclude 

that (1.20) determines four vanishingly small roots for every k as F -+ 0 . Utilizing this 
property for small h,. and E, we write the first equation in (1.20) as (2.1) 

&“{ 2bo&” + c2 [ - 4/3k4(k2 - 1)2 + 16/31L,,12k2 (k2- 1)2 + 4b,,W (k’ + 2) - 

- 8hti4k2(k2 - I)+ . . . ] + $[- *iJ5k4(k2 - I)*(4 + 9k2)+...l + . . .} = 0 

From (2.1) the following asymptotic expansion results 

~~;i = F”‘p01 /IO C hliio + &3Lkir + E2Rfiia + * ‘*? 

hkio” - z/&4 (k2 - 1)2bo-1 = 0 (2.2) 

h,i, = - 2;3hki0-1,2(,, - 1)2bo-1 
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3Lkia = hki,, [‘/3b,-1 (k2 - 1) (4k2 - 1) -1/5k2 - 13/15] (cont. 1 

Taking account of (2.2) and (1.14), we easily see that & = tJ and hIi = 0 are 

exact quadruple roots. 
Now, let us assume that all the remaining roots Aki + 00 as e --f 0. Then, by using 

the asymptotic expansions of cylindrical functions of an argument tending to infinity 
and with a small index, (1.20) can be given the form 

[czlii3 sin (uaki) (sin2 (aaki) - (~a~~)~)1 + ~~[a,~ sin3 (~a~.)(~~/~ - 8x + 
+ 4x2 - 6k2) - aki2 sin2 (auki) cos (auki) (‘“/, + 4x + 6k2) - (2.3) 

- aki3 sin (aaliJ (‘3/2 + 4x - 10k2) + alsi4 cos (auki) (15/2 + 2k2)l + . . . = 0 
(arti = 2&e, a = c-l sh E) 

The limit relationships ah.. + 0, dki + const and ski +- 00 are possible for the 
quantity ari for E + 0 and hw -+ 00. 

In the tirst case alCi + 0 for E -+ 0. Taking account of this property for small ski 
and e, we write (2.3) as 

[- ‘/aakis + l/iOakilo - 101/75a0ah.i12 + . . .I + (2.4) 

+ &2 [8boaki4+(16/3k2 - 4b,) ah.i6+(13/,,bo - 16/15 - */45x - 2k2) ski* +...I + 

+ c4 i32aki4 (b, f ll,k2bo + k2 - k4) + . . .I + . . . = 0 

The following asymptotic expansion results from (2.4) 

hi;i = EC;2 pr, pl = ori $ aoliil + E’aki2 + .-., aki04 - 3/2bo = 0 (2.5) 

akil = (k” - 3/,obo) aki;19 

aki2 = [(k” - 2/3k4)bo-1 f 167/2100b0 - 2/15x + 1/5]akio 

Let us examine the second case ol,i -+oki* as E -+ 0. Then, as is easy to see from 
(2.3), the ahi* satisfies the equation 

(aaki*)-5 sin (aah.i*) (sin2 (oaki*) - (aaki*)“) = 0 (2.6) 

It should be noted that (2.6) agrees with the equation governing the index of the 
boundary-layer edge effects in slab theory [6]. Equation (2.6) has a countable set of 
roots, hence (2.3) also has a countable set of roots such that htiie --f const as c--t 0. 

Refined values values of the mentioned roots can be obtained by using the expansion 

hki = p2 (2 sh 8)-l, p.2 = x1 + &26, + E46h.4 + . . . (2.7) 

6, = (4k2 + 4x - 1)(2x,)-’ - 8b, (sin 2x1 - 2sJ1 (sin2xI - z12) / xl4 = 0 

p2 = x,, + E26k,* -+ E46,,* + . . . (2.8) 

ak2* = (4k2 + 15) (2x,)-l, sin z. / x0 = 0 

Let us show that the third case is not realizable. Indeed, it is seen from (2.6) that if 
E --+O, then compliance with the asymptotic equality sin (auki) (sin2 (auki) - 

- (au,,)“) - 0 is impossible for aki tending continuously to infinity. 
Turning to the case of average k (e -“a 6 k < e-l), let us introduce the quantities 

h = 3”ki v r and k, = kv K The first characteristic equation (1.26) becomes in the 

new notation 
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(2bok4 - 4/3A") + E [ - s/3A6 - s/3 A4h2 + (16/3 - 4b,) A2h4 + 8/5 Alo1 f 

+ &2 [(8b, + 4) h4 - 413 A4 - sj3A21L2 + 112/45 A8 - (16/4g + 32/15x) A61L2 - 

- (32/5 - 52/15bo) A.“h” - *oS/94,A121 + . . . = 0 (2.9) 
(A2 = h2 - ko2) 

Seeking 3, as a power series in E we obtain 
(2.10) 

hki = E-‘tE (ho + &AI + E2h2 + . . .), ko2 - xkho - ,$,2 = 0, ~4 _ 312bo = 0 

Al = @oQ2 ('1, - l/&o-') + 1/2xk-l + xkko2 (1/5 - 2/3bom1)} (1 _ 2hox,-‘)-I 

h2 = @o[ -167/2toob, + 2/1sx - l/s - 7/12bo-’ + xk2k02 (-70g/3150+~6/45b0-~~ - 
- 2/3bo-1 - 4/9b02) + k,J (- a2/15,5 - */xbo-l + “/gbo-2)l + xk 12/3bo-’ + 

+ Xk2k02 (- 167/3x5o + 4/a.c,bo-1x + 17/45b0-1 + 1/3b0-2) + k,4 (- 271/1575 + 

+ 16/4cbo-'X + g2/4&o-1 - 4/gb0-a)l - ‘/12ho-‘Xk2bo-1} (1 -22hO~k-1)-3 

Taking account of the representation of the operator Q in the form (1.16) for large 

values of k (k =: E-l), the first equation (1.2 0) can be given the form 

[- 4/3&s + 8/5D110 - 808/945D,12 + . . . I + c2 12b,ps4 +(‘“/3 - 4bo)D12pa4 + 

+ D,4( - V3p2 - 32/sp34 + 52/15bop34) + . . .I + . . . = 0 

(D12 = p32 - k12, k, = E/C, p3 = X&i) (2.11) 

We hence find 

hki = e-l (p30 $- a”‘p31 + ep32 f e”‘p33 + * - *)I P302 - 1 k2 =0 

P314 - 3/32bo = 0, P32 = P31 2 ['/2~3U_~ + 2730 (4/3bo-1 - 2/5)l (2.12) 

p33 = p31-l Vi, - 3/40bo + p302 (-- 'l&o-l + l/20 + 411saoo4,)l 

Formulas resulting from (1.16) and yielding a good approximation for roots of the type 

(2.7), (2.8) when k < 8-r are presented below 

&.I= (2E)-1Y0 + 2EY1 + (2&)3Y2 + . . ., k, = 2&k 

(sin2z, - q2) / x14 = 0, vo2 = k,2 + xl2 (2.13) 

v1 = (sin 2x, - 2x1)-l [1/3x13vo-1 + 1/3x1vo - vo3 (2boxle3 + 2/3~l-1)l + 

+ vo I(2 - 2x) xl-2 - l/,21 + vo3 [(- “/* + 5/2x) x1-4 + 1/24x1-2] 

&i = (2&)-$0 + 2&pl + (2&)“,~k2 + . . ., po2 = k,2 + xo2 (2.14) 

p1 = PO3 [(43/* - 2%) Xoe4 + 1:24X3-2l + & [(- ‘12 + 2%) Zg-’ - ‘/,,I 

Finally, for very large 3Lki and k (k> E-‘) the roots hki should be sought from the 

asymptotic equation 

(sh yl sh y2)-“2 (1 - ezakz / hki2 )” (1 - eA2E k2 / hik2)2 Q** sh 8 + O(clel)= 0 

8 = k (thy1 - th y2 - yl + y2), ch y1 = eek / hki, thy, = e-Ek / h,, 

Q** = 2hk; [ch 2~ - ch (y2 - yJ1 + sh2 8 (1 - cth2 yJ (1 - cth2y2) (2.15) 

51 = max {h,i; k} 

which results from the representation of the operator Q in the form (1.15), and from 

asymptotic expansions of the quantities Lh, for large and complex k and 3Lki (see e. g. [7]). 
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4x, = (shy&yz)-“2 {she + k-l V2 ch 6 A, + . . . } 

&I = (sh y1 sh yJ’p - {sh 6 + k-l V2 ch 6 (cth y1 - cthyz - cth3y, + 

+ cth’y, - 4) +...I 

&,I = (sh y2 / shyI)“% { - ch 6 + k-l V2 she (cht3y2 - cthy, - A,) + . . .} 

L,, = (sh y1 / sh yJ”z{ch 6 + k-l V2 she (cth3yI - cth y1 + A,) + . . .} 

U, = V4 (cth y1 - cth y2) - “iI (cth 3y1 - cth3y2)) (2.16) 

We conclude from (2.15) that the asymptotic equalities 

hki z f kee, hki z f keeE for k-too (2.17) 

correspond to the eight roots 3Lki, and the principal parts of the remaining roots are found 
from the equations 

8 = 2h,, sh Ei (- 1 + l12y02 + . . .) = imn (i = I/-;i, m = 1, 2, . ..) 

Q**=(2hkish~)2(1+y~+...)+sh26(1+2y,,%h2~+...)=0 

(Y,, = k / hi) (2.18) 

which are obtained from (2.15) by using expansions valid for 1 y,,ee ( < 1. 
The analysis carried out shows that the first characteristic equation (1.20) contains 

three groups of roots. 

The first group contains two exact quadruple roots hsl = 0 for k = 0, and hri = 0 
for k = 1. 

The second group consists of eight roots determined by (2.2), (2.5). (2. lo), (2.12), 
(2.17). The order of the moduli of these roots hence depends on k. If k < E-‘~~,, then 
the moduli of four of them are commensurate with dizk2 (small roots), and the four other 
roots are commensurate in absolute value with e-‘/o (large roots). For k 2 da all eight 
roots are commensurate with k in absolute value. In the case of large and very large 

k (k z 8-l and k > E-I) the asymptotic equalities h,* z f k and hki z f 

f k exp (fe) are valid,respectively. 

The third group consists of a countable set of roots determined by (2.7), (2.8). (2.13), 
(2.14), (2.18). and growing as 1 / E as E + 0. 

3. Analytic of the state of atrena and rtrain correrpondfng to 
each group of foot). Group ( 1). The stress functions (3.1) 
‘J”,* (5, q) = T-,5 + T,S2 + T,C3 + (IV,,, + N1,2*5 + Jf,,,C2 + J41,2*5~) e” 

correspond to the quadruple roots hoi = 0 and hri = 0 , where T_,, . , ., A~l,s* are 
arbitrary constants, and the subscript 1, 2 provisionally denotes ul,aezq K a, coa q + 
+ a2 srn ‘p. 

Substituting (3.1) into (1.6), and moreover (1.6) into (1. l- 3). we obtain 

u = - 112Rla2~1To, 2, = 0, w = - R,;lT, 

0, == Ga,T,, (T, = (T, == .rrq = ,crz = q,\ = 0 

u = 0, 8 = R,LplT1, w=o 

Tzs = GplT,, CJ, = (J, = crq T-Y ,crw = ,rT,., z 0 

(3.2) 

(3.3) 
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(3.9) 

u = R,e-l { [xA3 + b,h’l + E I-- (cl + a,,) A2h2 - (‘/s + 13/sx)A4 + 

+ t (b,h2 + ‘/+z2A6) + V2t2( (a, - b,JA2h2 - a2A4)l + . ..} dY, I c?C 

w -= &E-’ { [3L2B, (t) + x3L2 + 4/,A6 - txA2h21 + E [k2B, (t) + s/,A4 - 

- Vsb&” - (8/3 + ‘I&) A21L2 - 62/45A8 + t (V3 + ‘s/,g) A43L2 - 

- t2C1/,x ( A2k2 + h”) + 2/3AR) + ‘/st”a6 AJh2] + . . . }Y1 

D = R, { [B, (t) - x - txA21 + E [B, (t) + 1/3b,h2 - (a/, - 23/& A2 - 

- t(x -I- (1 - “/,x) A4> - t2 (‘12xA2 + b,L2) + ‘16t3a,A41 + . . .} a2Y, / acaq 

z,, = 2Ge- ’ ( h2B, (t) + 2/sA6 - txA2k21 + E [L2B, (t) + 4/3 A4 - V~X?,~ - 

-=/45A3 - (2 - 4/3x) A2h2 + t((V3 + 13/sx)A43L2 - 2/,~6 - xhs) - 

- t2 (l/,xh4 + lIsAa) + 1/6t3U,A4k2] + . . .} dYl / 8cp 

oz = 2Gc-l { h2B, (t) - 1/3a_2A6 - b,h2 + t(a,A4 + (b, - 2~~) A2h2)] + 

+ E [h2Bl (t) + 1/3b_lL4 + (“/ 4x2 - 1/3a26) A23L2 + (6 - 5/3x) A4 - 

- (~2 f 26/45)A8 i- t(a, ( A2 - a2 - 5/2A6) + (l/+z,, - Il16b_,)A4h2) + 

+ t2 (l12b,A2h2 - l12xh4 + l/ea_, A”) + 

i- t3<- l/6% A6 f (‘12a2 - c3) A4h2)l + . . . }dY, I a< (3.10) 

= 2Ge-l {[- h2B, (t) - 2/,A6 - 2t (A” - 2A2h2)] + E [- h2B, (t) + 

t-?&h’ - ‘/aA4 + ‘IsA’ - ‘13xA2h2 + t (23L2 - 2A2 + 14j3As - 1/2a,,A”)L2)+ 

i- t2 (A” - 2A23L2 + ‘l,xh”) + t3 (2/3A6 + ll,a,A41L2)] + . . .}dyl / ag 

0, = 2G (t” - 1) {[2A2h2 + 1/3A8 - A4 - t (1/3A6 + 1/8a0A4h2)] + 

+ 8 [A2 - A2 -i- “/6 A6 - 1/,a,,A4k2 + 1/3a_4A2h4 - 31/s,,A10 + t (1f3A4 - 

- ‘/a%A2h2 - ‘13b,h4 + ‘/,,A8 - c,A6h2) + t2 (‘/, A6 + 1/6a_6A41L2 - 

- %aoA2h4 - VlsAIO) + t3 (VsoA8 + V,,U,A%~)~ + . . .} ayl i ag 

z,*, = 2G (t” - 1) (4 (t) + E [B3 (t) + A2 + l12a2h2 - 5/2A6 - ‘lst2A6 + 

+ t (2A2h2 - A4)l + . . .}d2Yl / ag aq 

xrz = 2G (t” - 1) E-~ {h2B2 (t) + I [h2B, (t) + A2k2 - h4 + 2/3As - 

- (“1s - ‘/3x) A6h2 f t( (2/3a3 - 1/2bo) A2h4 - l/,a,A4k2 + l/sAlO) - 
-_ ‘/,t2A6h21 + . . .}Y, (3.11) 

B, (t) = V3ao A4 - tb,h2, B, (t) = A4 + V2aoA23L2, B, (t) = A6 (c, - Vst2u2) + 

+ tA23L2 (Cl + c,t2) 

Bs (t) = - 13/12aoA4h2 + l13t (boa4 + li3 A”) - 1/12t2ao AdA2 
cl = 2b, - c3, c2 = 77/45 - 41/gox, ~3 = ‘/a .(ao + b,), co = 53/l3ox - 43f4b 

It follows from (3.9), (3.10) and (2.5) that the quantities u, v, . . ., T,, correspond- 
ing to the large roots and satisfying the relationships 

I u 19 1% 17 I 0, I==: E-sh, z e-lk 

I UJ I, I ‘trz I = E-l, ,v,,/T,,,sk\ I$[ z &--‘/I (3.12) 

decrease as exp (- E-‘/Z p**sl) (Re p** > 0) with advancement into the domain 



488 N. A. Bazarenko and I. I. Vorovich 

occupied by the shell. Thus, the solutions corresponding to large roots are edge effects, 

whose damping zones will be narrower, the smaller the E. 

In the case of rootS defined by (2.10) and commensurate with k (&-‘/I ,( k < e-1) 
the following estimates are obtained from (3.9), (3.10) : 

1 u 1 =: k3, 1 ~1, 1 w 1 = Ek4, I ‘tm 1, I oz I, Iowl = Ek5 

Id 3 z e2k5 I ‘t,, 1, 1 z rzl = At5 (3.13) 

Hence, all the characteristics of the state of stress and strain decrease as exp (- k,Q. 

Therefore, as k increases its corresponding homogeneous solutions become damped all 
the more rapidly. For k Z=Z em1 the following solutions correspond to roots defined by 
(2. li?) : 

u = RS~-’ { b,,ps2 + e’jqxA2 - (Cl t- GJ)A2p2 + 1/3%Aa + 

+ ‘/St2 (a, - b,)h2p,21 + . . .} dY’, / a< 

21 = M-l {W (t) + e’h FBI* (t) - txh21 + . . .} d2y, / acacp (3.14) 

w = J’W3 {P~~B,* (t) + e’lz [pa2B,* (t) + 4/,h6 - twi2p,21 + . . .} Y, 

(J, = 2G@ {p3’Bo* (t) + $1’ [P~~B,* (t) - 1/3u,h6 + th2ps2 (b, - 2uJl + 

+ . . . 1 dY, / x 

ucp = 2Gew3 { - ps2B,* (t) + e’h [- ps2B,* (t) - 2/,h6 + 4tA2p,2] + 

+ . . .} dYY, I ag 

T zq = ~GE-~ {ps2B,* (t) + ~“2 [P~~B,* (t) + 2/,h6 - txA2pa21 + . ..} dY,/dq 

TV, = 26 (t” - 1) e-‘/Z{ [1/2uOA2p341 + e”z [ps2B,* (t)l + . . .} Y, (3.15) 

T r’p = 26 (t2 - 1) eC ‘2 { [1/2a,A2p,21 + d/z [B,* (t)l+ . ..} a2Yy, / a& 

(T, = 26 (t” - l)e-’ { P/3As - 1/&,A4pP321 + e’fz [A2 (2bS2 + 1/3a_4p,4 - 
- S’/soA*) + tA6 (cop32 - l/J - V3t2A2 (a,~,~ + llsA*) + ‘/~ot3a,A6p,21+ 

+ . . .} 8Y, / ag 

B,* (t) = ‘13a,A4 - tbOpa2, A2 = e-‘/AD,2 

B,* (t) = A6 (c2 - ‘/at’s,) + tA2ps2 (Cl + C3t2) (3.16) 

B,* (t) = A4 (1 - 15/12a,pa2) + ‘1st (b,ps4 + VsAs) - 1/12t2a,h’ps2 

Analyzing the estimating formulas (3.13), which are also suitable for the relationships 
(3.14), (3.15), it can be noted that for large k (k 2 8-l) , the homogeneous solutions 

(3.14). (3.15) are governed. in a first approximation, by the quantities V, w, o,, o,, rzrp, 

i.e. correspond to some plane state of stress. 

Group (3). If k & e-l, then by expanding the solutions of this group in powers 

of the small parameter e and limiting oneself to the first member of the expansion, we 
find the following asymptotic expressions : 

u = eR3D02{ sin tlDo [(I - x - tJ D, sin2D, - 1/2 tlDo2 sin 2DJ $ 

+ cos t,D, [(tlDo2 - x) sin2D, - 1/2xD, sin 2D,l} Y, (3.17) 

v = 2e2R,P, (t,) dYY, /L~cp, w = 2e2R,P, (tJ c?Y, I a< 
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Q, = GD,,’ {sin &Do [(l - tlD,2) sin2D, + llzD,, sin 2DJ - (3.18) 

- cos tlDo b,D, sin2 D, + 1/2tlD,2 sin 2DJ) Yl 

59 = EGP, (tJ dYY, / dq~, T,, = EGP, (t,)aY’, / ac, 

‘tm = 4e2GP, (tJ d2Yl / a&$~ 

6, = G (he2P, (tl) - a,P, (td Yy,, a, = - G (k,2Pl (td + a2Pa (tA)Y, 

PI (tr) = D, (sin &Do [(tlDo2 - 1 + x) sin2 D, + l12D, (x - 1) sin 20~ + 

+ cos tlDo ID, (t, - x) sin2D, + 1/2tlD,2 sin 2DJ) 

P, (t,) = Do3(sin tlDo [2 (1 - tJ sin2D, - tlDo sin 2DJ + 

+ 2&D,, sins D, cos t,D,} (3.19) 

P3 (t,) = Do3 {sin &Do (sin2D, + V2D,, sin 20,) - D, sin2D, cos tlD,} 
Do2 = 3L,2 - k82, h, = 2&&i, k, = 2&k, tl = (2&)-l In p1 

and the roots hki are found by means of (2.7). (2.13). 

In the case of roots defined by (2.8), (2.14). we find the following expressions: 

(3.20) 

u = 0, v = 2~~R~h,~ cos tlD,aYy, I &p, w = 2E2R3ke2 cos t,D,dYl I a< 

T z’p = 2e2G (kS2+ h,2) cos t,D,d2Yl I a@p, oz = -0, = Ghe2ke2 cos t,D,Yl 

T rz = - cGD,k,2 sin t,D,dY,/ ag, T,~ = - EGD,,~,~ sin tlDo dY, I &p 

u, = 0 (3.21) 

It follows from (3.17), (3.18) and (3.20), (3.21) that for small E and k < 8-l, the 
displacements and stresses corresponding to roots of the third group are subject to the 
relationships 

1 4, I w I = ~7 I VI = E2k, Ior/, Id, [ 4 ILI = 1, 1 zG,v Iz I ‘c,,I = EJC (3.22) 

14 = e2k, I w I z E3k2, IoJ, Icr,I, jqzl ==: e2k2, ]~,,l, lx&l = Ek (3.23) 

?nd decrease as exp (- ~-~p***sJ (Rep*** > 0) with recession from the boundary 
r2. It is important to emphasize that the relationships (3.17)-(3.21) actually agree 

with the homogeneous solutions obtained in plate theory [6]. 
All the above affords a foundation to conclude that the edge effects of applied shell 

theory correspond to the second group of solutions. The third group of solutions yields 
the boundary layers which are generally absent in Kirchhoff-Love theory. 

4. Anrlyr!~ of roota of the choracteri:tic equrtion of an open 
cylindrical #hell, Utilizing the representation of the operator Q in the form 

(1.14), we easily establish that the second equation (1.20) reduces for n, = 0 to 

(k,i f k,,i3)sin2Ekni (sin”2&k,i - k,;%h?2&) = 0 (4.1) 

This latter contains two groups of roots: 
1) Quadruple roots k,i = 0 and double roots k,i = t i; 
2) A countable set of roots growing as 1 ! E as E ---f 0 and defined by the formulas 

/iom = (2&)_lrnZ (m = 1,2,...), k,i = (2e)-‘koo + 2.skll + (2E)3k,, + . . . 

(sir?k,, - k,,2) / koo4 = 0, kll = 1/3k,,” (sinzk,, - 2ko,J1 (4.2) 
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li,, = 2/45 [/coo3 (sin2&, - 2&,)-z + k,,8 (sir&,, - 2&,) m3] (cont. ) 

We apply a method expounded in the Gol’denveizer monograph [S] to investigate the 
roots of the characteristic equation (1.20) when n, # 0, E - 0. In the case of small 

nm (% < e?,we obtain by making the change nRL = F’/? n, in (1.20) 

]Zbono4 - 4/3k.,li4 (1 $ h.nF)‘?] f &]“jsh.,,” (1 + k.,i”)“n,“) $- a‘? ]4b,n,” (2 - kni”) - 

-8kni’ (1 + k,,i’)no* - “/dbkni4 (1 3_ k,i3)‘? (4 - 9k,,‘)] + . . . = 0 (4.3) 

Hence, as E + 0 rhe following asymptotic expansion results 

k,,, = k,,,o + &k,,il + E2/S,,i2 t-’ ’ ’ ) knit; (1 + kni,,?)? - 3/abono4 = 0 (4.4) 

k = no” (1 + k,io”) 
nzl k,i” (1 + 2k,i,‘) 

For medium values of nm (kir < n, < dz), the substitution k,l, = eC’ *k2 reduces 
(1.20) to 

(Z&n,4 - */3x.,8) + s”l”kq6 (-8/S +r6/a n,?) + eh,” (-4/a + 3~/8n,,~ - Pm,‘) + 

+ 8”: kiL (16/3nl,;L - 4b,,nm4 - 8nm4 + 16/s nm6 + xljk,H) + . . . = 0 (4 .5) 

We hence find 

AlLi z c-“4 (k,, + a”> k,l i- FL,, + e”” kz3 i_ ..), ha,,, - 3/2b,nm” = 0 

kg = k,, --I (-l,fq + I/gl,“), kzz = k2o-3 (l/z:! + V8n,” - V6n,J) (4.6) 
k,, = &C5 ]‘/l?s + ?,@,’ + (9/s~ - 3/ca,b,)nm4 + 1/16nm6] 

In the case of large values of n, (E-“’ 6 n, < c-l), we apply the substitution nm = 

=.E ’ J n, and kni i= e-l:’ h,, we represent (1.20) in the form (2.9), wherein we put 
A” z k3’J _ nr”, hz _ _Q. Now, expanding h, in a series in E, we obtain 

k IEL -= E m’c’2 (k,, + eksl 7m &“k,,r. .)a k;,,,-! - xknl - n,2 ~ 0 

k,l = k,,-’ I-‘/J + Vq~.~,~ln~ + n12 (‘/s - 3iz,,b,)xk-1 I, ~~4 - “/%b, = 0 

k,, ~~ k’ao-3 I’/,ubo~’ -‘/3J + lj16xk-l (1 i_ b,-‘)nl + xk2(S!,GbO-1 f l’!&zl’?. +xk (%sj 

bo-’ J- ‘“izJ d- 1t’&n13 + (--ll.rb,~ l + “g/rio + ‘/ISX + ‘9i’t13a,,,c,b,,) n14 + 

i-Xl‘ -I (-‘/cbg -I -t l/10 + 41/a,obo)~151 (“.7) 

Finally, for n, Z c-l, equation (1.20) can be written in the form (2.11) by virtue 

of (1.16). by putting D1z = kd2 _ n,Z . Pn- * -- -n2z, ?i4 -L Flirti, n2 = wnz (4.8) 

Taking account of (4.8) it follows from (2.11) that: 

kni = E-l (k,, + F.‘.‘” h,, + ckhz + E”’ ka3+...), h$ - n2.? _ 0 

k4,4 - ?‘32b, = 0, k,, : hdo3 [-‘l’gt,-l $- n2 (“!abo-’ - ‘/5)] 

h,,, =. ha0 -l [3/c4bon,-’ + “/,,,b, + n2’) (--‘lleb,-’ -F l/z0 4 “‘iwb,) I (4.9) 

Furthermore, taking account of the representation of the operator Q in the form (1.16), 
it is easy to establish that the second characteristic equation (1.20), in addition to the 
eight roots found above, also has a countable set of other roots for which h.,i” -7 const 

as E- 0. For n m < 0, the asymptotic of the mentioned roots can be obtained by uti- 

lizing the expansions 
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kni = (2q-k& + 2&q + (2&)30, + ..* 

cc,-lsinx, = 0, (To2 = ne2 + xo2, 72, = 2&n, (4.10) 

cl1 = ffo-%z,s (rz*s[(43/3 - 2X&-4 + v24so-21 + f-‘/12 + ~~)X,--2 - ‘/Id 

k,i = (2&)%0 + 2~31 + (2E)30z + . . . 

(sin2sl - 2r2) / xl4 = 0, 00 
2= n,” + 212 

co1 = ooml {(sin2sl - 2rl)-1 [l/3z13 -+ 1/3rz2,2zq - r~,~(2bozl-~ + z/3qe’)l + ne2 1(2 - 

- 2+,-2 - l/121 + n*4 [(-“/S + ~/~x)x1-* -t ?A4x1-23~ (4.12) 

In the case of very large k,$ and rzM (n, > 8-l) the roots of (1.20) should be sought 
from the asymptotic equation (2.15), in which h,* should be replaced by in,, and k 

by ik,<. Thus tranformed, it defines eight roots which satisfy the asymptotic equalities 

k ni = + nmeE, k,i s f nmeeE for n, -+ 00 (4.12) 

and the principal parts of the remaining roots are found from the equations 

6 = ?k,jei (-1 + 1/2y*2Sh2& / 2E -/- 1/sy14Shk& / bE+...) = in3C 

Q*” = ye4[k,i2sh22E(1 + ~,~c112& + . ..) + sh*0(1 + 2y,kh2e + . ..)I = 0 

(?z = 1,2 ,..., y, = n,/ kni) (4.13) 

which are obtained from (2.15) by using expansions which are valid when 1 y.e” i < 1. 
Thus the analysis expounded above shows that the second characteristic equation 

(1.20) contains threegroups of roots. In the first group are the quadruple roots koi = 0 

and the double roots koi = rf i defined for n, =y= 0. The second group consists of eight 
roots defined by (4.4). (4.6), (4.7). (4.9), (4. In). The order of the absolute values of 
these roots hence depends essentially on the quantity n,. For small n, (n, 6 E”~) the 

absolute values of four of them are commensurate with E-“~R~ (small roots), and the 
other four roots are subject to the relationship 1 k,$ j s 1 (large roots), For medium 
values of n, (n, z 1) all eight roots are commensurate with e>;’ in absolute value. In 
the case of large and very large n, (n, z E-~ and n, > e-1) , the relationships 
k ni TZ + nm and k,i z S: n,exp (fe), are satisfied, respectively. The third group in- 
cludes a countable set of roots defined by (4.2), (4. lo), (4, II), (4.13) which grow as 
lie as E-O. 

6. Anrlyrir of ths atate of 8treu rnd #train of rn open cylin- 
drical shell, Group (1). The stress function 

Yz* ({,(p) = E_,cp -t Eo(p2 + &(p3 -I- WI,, i- ~l,2’cP)ei’p (5.1) 

corresponds to the quadruple roots k oi =: 0 and the double roots hoi = & i, defined for 
n,, -= 0, where E-r, E. ,..., Kl.z are arbitrary constants. 

Utilizing (5. l), (1.6). (1. 1 - 3), we find the displacements and stresses 
u = 0, v = 0, w = R1~Eo 

z 
ZQ 

= Gpl-?Y,, 0, = (TQ = (r,= TGrz = trw = 0 

u = R1 Iha+ P~-~) Q* + CWw - 4&L u = R~2~~~~~, w = 0 (5.2) 

(lo = 2G [cl* (1 -I- pIm2) -I- 2 (lnp, -I- 1)1-b, 0,. = 2G [cl* (1 - PI-~) + 2lnpr]& 
CT, = -2Ga, (1 + cl* j- 2lnp#Zr, z,, = rrz = rz+_ = 0 (5.3) 

u = Rr [2a3 (c&lnpl ?- d&) - d,pr2 - dl $- d3pi2 - i2xdlcp]K~.,‘ei’P 

v = RI [2a3(dllnp1 - d,p,s) - 3d,p12 -l- dl - d,plb2 - i2xdIcpliK1 z*ei(py w = 0 (5.4) 
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oW = 4G (3&p, + drpr-l + dsp1-3)Kr.,*eiQ, rrz = 0 

or = -4Ga, (dlpIml + 2d,pI)K1,,*ei”, zzQ = 0 

T rrp = - io,. = 4G (d,ple3 - dIpIml - d,p,)iK1,,*ei” (5.5) 

(cl* = d,,d,-llnd,, d, = 1 - d,, d, = 1 - d,-l, dl = d,-’ - d,) 

It is easy to show that the stress functions (5.1) correspond to the following elementary 
states of stress: (1) pure shear (E,), (2) pure bending by edge moments (E,), (3) bending 
from the joint effect of a moment and tensile forces applied to the boundary I’2 (KI,,‘). 

The constants E-i and KI.~ correspond to shell motion as a rigid body. 

Group (2). The solutions (3.6) (3.7) in which k should be replaced by ih_,i, 
and PO by ino, and the stress function Y1 by Y’, , correspond to roots defined for small 
n, (n, < E’/‘) by (4.4). The quantities U, 21 ,. . . ,T,.~ will then satisfy the relationships 

I r,, I =n m3y / q+ I , I Gz I= h-ntnm2, I zTq I = Ptklli?n,“, I a,1 = ~k,pm2 

1 z,, 1 =: Ekrlinm3, 1 v 1 z kn$, 1 u 1 s kni3, 1 W I S kninm 

( I kni ( s E-%2, j k,i 1 = 1) (5.6) 

Therefore, for n, < .s’lZ the state of stress of an open shell is determined by IJ~ and IS, 

in a first approximation, and as is seen from (3.7), is primarily bending. Thus, solutions 
corresponding to the eight roots of the second group for n, ,( e’jZ are generalized edge 
effects [8], which decrease as exp (--a~“’ n,y*s,), where Rey* > 0 and sZ is the angular 
distance from the boundary rZ. 

For medium values of n, (Ed” < nm < a+‘), the roots kni are determined from (4.6) 
and their corresponding solutions are given by formulas ( *) 

u =- R3~-1f2 {-xk,2 - i1Zb_2nm2 f . . .) 8’4, / hp 

v = R3~ -“2 {xks2 + ;‘l (xtk,4 + 2bonm3) + . ..} Yy, 

w = R,{--x + E”‘Xtk,2+...)a “Y, / a@cp 

or = 2G{& (P - I),$4 + . ..) aYy, / a’p (5.7) 

arrO = 2G{e’/l (1 - t2)ks6 + . ..) Yy, 

%.z = 2Gt.s (1 - t2)kz4 + . ..) azYy,/ at@ 

‘3, = 2G { [-bonm2 - a,tk,4] j- &“‘k,2[(2ao - bo)n,,“t - azt - 1/3a,k,4] $ . ..)aY. / 8cp 

aq = 2G {[2tkz4] + e”ick22 [2t(l $ aonm2) + 2/&,4] + . . ..aYu. I hp 

Tzq = 2G{ [xtk,“+ bonm2] + c”2kz02[t(x + bm,nmg) $ 1/3a,k,4] -/=- . ..)aY. / ac (5.8) 

The relationships 

1 u 1 rC E-Ji”nm3’r’, 1 L’ j = E-““IL,, 1 W 1 = E-“4nm3’2, 1 Bz j, 1 3. / = E -“‘4,&“/2 

1 tzq ( = nm3, [ T5,, 1 e e’*‘2nm3, 1 t,, I z E!*~,~‘:, j sr 1 = a’*/‘,~~“~ (5.9) 

result from (5.7), (5.8). 
Being primarily a bending state, the state of stress (5.8) hence damps out as 

exp (_ E--‘i’nm’l” y’ *SJ (Hey* * > 0). Therefore, the homogeneous solutions correspond- 
ing to medium values of n, (E’~ < n, < e-‘jz), are edge effects whose damping zones 

*) The solutions (5. ‘I), (5.8) can be refined by terms in E and E”I, if the relationships 
(3.9) (3. lo), as well as (3. l), (3.9) from [l], are utilized. 
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will be the narrower, the greater the E-“‘%‘~*. 
For large values of n, (E-‘~’ 6 n, < E-I and n, z 6). the solutions (3.9), (3.10) 

and (3.14), (3.15) correspond, respectively. to the roots defined by (4.7) and (4.9). where 

k should be replaced by ik,i, h,i by I+,, and ?yl by Y,. The estimates (3.13) are 
retained for the quantities u, v,...,L~ even this time. Hence, all the characteristics of 

the homogeneous solutions (3.9), (3.10) and (3.14), (3.15) decrease as exp (--n,s,), 
including the components of both the bending and the membrane states of stress. 

Group (3). Presented below are exact solutions of the third group for % = 0. 

u = 0, v = 0, w = RlcosqY,, 0, = (Tq =a,=0 

a PZ = -GCpl-lsinqY’,‘, z,, = Gp,-%osqY’,‘, x6,V = 0 (5.10) 

The k,i in (5.10) are roots of the equation sinZek,i / 2Ekoi = 0 

u = RIP, [(2x - 1) C,’ - E,’ i_ pl-“k,$fII’] Y?, w=o 

u = RIP1 [( 1 - 2x) C, - E, + pl-“k&-J Ye’ / koi, z,, = t,, = 0 
(5.11) 

t +o = 2C (- E,’ + P~-~H,,‘) \r.L’, Go = 3G (2E,’ - koiE ~ + pl-2k,,,‘Ii,d) Y.L 

ar = 2G (2E,’ -t k,%E, - P~-%~H,,) Yz, 5z = - 4Ga.LE rr’Yz 
(5.12) 

CV = -(Cos q -k k,i sin 11) k R, / RI [COS (‘1 - 0,) j- kh sin (q - e,H 

K, = - (R, / R# (sin 9 + ka cos q) + R, / RI [sin (q - 0,) + k,,i cos (q - O,)] 

En = Cq + k,i Cm’s H, = K,’ + k,iK,,, q = koi In ~1, 81 = 2Ek,,i (5.13) 

The primes here denote differentiation with respect to q and cp, and koi are the non- 
ZfXO roots Of the equations SiI12EkOi t k9i ~11215 = Cl. In the case when 0 < n, < Eel, the 

homogeneous solutions are given in a first approximation by (3.17), (3.18) and (3.20), 

(3.21) in which the quantities k, h,i and Y’l are replaced by ikni, m,, Ys,respectively, 

and therefore, the behavior of solutions of the third group of a cylindrical panel are the 
same as the analogous solutions of a hollow cylinder. 

6. Construction of refined applied thcorle: for circular cylin- 
drical shells. As is seen from (3.1)- (3.9) in [l], the homogeneous solutions (1. l)- 

-(l. 3) can be represented in three forms 

(u, op. or, a,) = Wll, %l, Q,l, QdPY', tZp = Q51hY' 

CL', t,,) = c&l, Q7lW,~Y, @A T,,) = (%I, Q91)Y J (6.1) 

( u, ocqpr (Jr, a,) = Wl,, Q,,, Q,,? Q42P2Y1 Tzp = QdJY 

(c, 't,,) = (%a WY, (w, Trr) = (Q&2, Q99P,PY I (6.2) 

(u,(Jqpl op, oz) = (Q13, Qz,, Q,,, %A y, rzfq = Qd2PY 

(v, $J = (Qes, Q73)GY', (W z,,)= (Q33QsJPY 1 
(6.3) 

Here (u, og ,...) = (C&,, Q,, ,... )Y denotes the system of equalities u = &Y, aQ = 

= 6&Y,..., and the quantities QjtLare integer operator functions of D2, p2, E and lnp, 
representable by series of the following form : 

Q,, = 2 EkQIPLh. (D’, p?, q, <?,, = ; Ek!!;,,h (I?,“, p+‘, tl) (6.4) 

Y=o ha) 

where the operators !I,,, and !!* ,p*A are of the type (1.12) and (1.17). 
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Therefore, if the stress function Y has an index of variability p” < ~‘-1 (p” = 
= mm {k, nM, 1 kBi [, 1 k&i I)), then by keeping a sufficient number of terms in the series 

(6-l)-(6,4), a series of applied theories of circular cylindrical shells can be constructed 
which have any previously assigned accuracy in E. Hence, by having the solutions of the 
third group, the boundary conditions can be satisfied more accurately than in the integ- 
ral sense 19, lo]. In this case a system of algebraic equations in H,, and Nnif is obtained, 
which separates asymptotl~ally, for small e f into one eighth order system and two count- 
able infinite order systems (see e. g. [3]), These latter have been studied in [6,11], and 
are solved effectively by the method of reduction, 

As regards the constraint imposed on the index of variability p”, it is insignificant 
since such theories are intended to reduce smoothly varying external loadings applied 

to the boundary I’*. The relationships herein are given as a specific refined applied the- 

ory. Together with the relationships (3. I), (3.9) from [l]. the proposed theory yields an 
error on the order of Et as compared with unity, if pa & ~.-‘ie~ and an error on the order 

of F if p” ZZ- 1 ) and can be utilized ta check the accuracy of existing applied theories. 
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