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The nonaxisymmetric problem of elasticity theory for circular cylindrical shells loaded
along the endface surface I, is considered, By using the method of trigonometric series
expansions, homogeneous solutions of closed (I'y: z = 4 1) and open (T : ¢ = - @)
shells are studied as their thickness decreases,

It is proved that the state of stress of a closed shell includes four parts; (1) an elemen-
tary state of stress penetrating into the shell without attenuation, (2) a slowly attenuated
principal state of stress, (3) a rapidly attenuating state of stress (edge effect of shells),
(4) a boundary layer type of state of stress,

In the case of an open cylindrical shell subjected to a periodic loading with period Z,
there are states of stress of types (1), (3) and (4). The rate of attenuation of the edge
effects hence depend essentially on the number of the term of the trigonometric series
as well as on the quantity /. In both cases asymptotic expansions are presented of the
components of the states of stress and strain,

On the basis of the exact solution of the three-dimensional problem, a refined applied
theory is given for a circular cylindrical shell, which is intended to reduce the stress from
the endface surface I',. Applied theories reducing the stresses from the cylindrical por-
tions of the shell boundary were considered earlier in [1].

1, Construction of homogeneous solutions, Let us consider the arbit-
rary strain of an elastic isotropic shell bounded by coaxial circular cylinders I’y of radii
R, and R, (R, << R;) and an endface surface I';. Let us assume that the stress result-
ants applied to the boundary I'; form a system statically equivalent to zero, and the
boundary I is stress-free. As the initial relationships let us take expressions for the
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displacements and stresses obtained in [1] on the basis of Lur'e's symbolic writing [2]
usz{Z'AmE'lZ% ~§ZC+*}
v= Ry {§'2,0,4 + Z/N + +} (1.1)
w == Ry{Z,A + [EZ,) + 2xZ,] C 4%}
o = 2Gp{lZ, (vE2—1)—EZ/1 A + (§*2,—EZ2/) 9. N +
+ [(4 — %) Z,— EZ,] C + %}
re =Gp{2(—87Z,4-§72,) 0,4 +
- {Z, (2v?E 2 — 1) — 28712/ | N — Z,0;,C + %} (1.2)
Tre = GP {22/ A — E'Z0,N + [Z, (v —28) + 2621 C + %}
6r = 2Gp{ZvAd + [2 + %) Z, + 82/ C + }
Too = GP 282,04 + Z/N + (28 Zv +- Z,) 03C + #} (1.3)
Gp = 2Gp{(—VEUZ, +EZ YA+ (—F2, + EZ))0,N + (1 —%) Z,C + #}
a3 a . I —— \
(p=gp =g, v=—its, E=pp, L=7-, p=gr. x="Ui)
Here m is the Poisson number, A, N, C are arbitrary functions of § and ¢, Z, (€)
the cylindrical operator function (see e, g. [1]), H;, the characteristic dimension, and the
asterisk denotes the analogous expressions obtained by replacing Z, (§), 4, N, C by
the functions X, (§), 4%, N*, C¥,
Let us extract the class of homogeneous solutions out of (1, 1)—(1, 3), i. e, solutions for
which there are no stresses on the boundary T’

=0, T, =0, 7, =0 whenr =R, R, (1.4)
Substituting 0‘,, Trps Trg from (1,2) into (1, 4), we obtain a system of homogeneous
differential equations of infinitely high order in the unknown functions A, N,..C*

dyd + dpN + ...+ dC* =0
(1.5)
dgd + deeV + . . . F deC* =0
where the d;; denote appropriate operators, Following [3—5], it is possible to take as the
solution of (1, 5)
A=4,¥(Z ), N=4y¥ &9, .... C*=4x¥ (L9 (1.6
The operators A;, here are cofactors of elements of the £th rows of the operator-
determinant () of the system (1.5); W ({, @) is a stress function satisfying the equa-
tion QY (L,9) =0 (1.7
Equation (1. 7) determines a countable set of solutions ¥ (, @),and their correspond-

ing functions Ay, Ny, . . ., Cx* form homogeneous solutions for a circular cylindrical
shell after substitution into (1, 1)—(1, 3).
Evaluating the determinant of the system (1. 5), we obtain

= Ly (L3, Py, i + P
p “Z_m ?;0 ki ( ki, i+ Prj) (1.8)
LFNP@&W®~W@MW@W

1O (z) = f (@), /P (2) =df (2) /de, & = pRy/ Ry, & = pRy [ Rs (1.9)
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Here J, is a Bessel function of the first kind, K, a Weber-Schlaeffli function of the
second kind, Py; ;. and Py are expressions of the following kind

6 8
AV awls  (r=2, 2%+i<t2) (1.10)
k=0 i==0 p P

Now putting R, = V[m and taking into account that the operator @ is an entire
function in this case of not only D%, p* butalso ¢ (¢ = 0.5 In (R, / Ry), D* = p*+
+ 8,%), we represent the right side of the relationship (1, 8) as a power series in &°.
Calculations yield

Q =8 D e%0, (D, p¥) (1.11)

k=0
Qy = 2bop, Q; = by (8 — 4D?) p* + %/5 (D? + 1) p* — ¥/3 (D* + D* + p?)?
Q, = 8/,D1 - 12/, D¥ — (3% u + 1%/,5)Dp® + (/15by — %/s) Dip* + Q,*
Qg = — 88/5 D12 - Q% (2by = %* — 4x) (1.12)
Here Q,* and Qg* are lower order operators than those written down,
If expansions of the gquantities L}k in powers of p are utilized
Loy = pby* — /430y -+ Ygp® (by ch 28 — 1/pb,) + . . . (1.13)
Ly = — bg*v® / p + *yp (Y3by — ay sh 28 — by* ch 2e) +
+ Ysp® (b* sh® 2e — 3/, by ch 2e + by) + .. .
Loy = e*{ap —1/3p® (b,*sh 2e + /3 by) + Y/is p'(b1 ch 2& + etby — B,) +...}
Ly = e*{ — ao +Y/2p? (bo* sh 28 — Y/3b1) - /y9p* (b1 sh 28 + e~tb; — by) +...}
(as = ch 2ev, by* ==sh2Zev/w
by = [sh2e (k +v) /(b +v) —sh2e (k —v) /(E — V)] 1/ v
then we obtain by substituting (1, 18) into (1. 8)
Q (e, 85% p?) = s (05 + 35°) sin 20,¢ (sin® 20,6 — 8,% sh? 2¢) +
4 p2®* (1 + 3,%) Uy (&, 0,%) + p*U; (e, 83 + . .. (1.14)

where the entire functions U, (e, 6,%)and U, (g, 3,%) do not vanish for 3,2 = —1 and
0,2 = 0.

By virtue of (1. 10) the operator () can be written as

Q = p¥ Q*Loo 1% A2%} -+ p*{2Q* [Lyeef} (1 + uy?e®) A, +
+ Lge® (1 + xy% %) A%l + 8x{sh? 2e (Lyeet Ay + Loie™=4y) v} +
+ p*{2Q* 2Ly, (1 + 2xy?® ch2e + x*p%) — Logy® (A, A, + 2 sh?2e)] —
— %Lgo{ (y* ch 28 — 29y + ch 2e) (2Lyy® — 2Loo™y* + Loy® + Lye® — 2¢h 2¢)+
+ 29%Loe? (Ay A, + 2sh? 2e) + (y* — 1) sh 28 [Ly® — Ly® — 29°) X
X {(Lop2e® — Lyo%e %) 1) — 2% sh?2¢ [Lyg — 8Ly y* — (9 + 2x)Looy*1} + ... (1.15)
where

* = Lo M Ay + Lyg? Ay + LoyA; + L™ — ™Ay — e Ay

Ay = 1 — yP, Ay =1 — yle2
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Finally, the operator (} admits of yet another representation which is specified by the
appropriate expansion of the quantities L

X
*
~
—_—
—
.
[
(=]
S

where k=0

Qo=D,s'nD,(sin? D, — D,?) (D= (2e2 D% p, = 2ep)
= sin® Dy {p,* [(—"Ys + 4u + v D, —3,D, "
+ P*2 [(1/2 '—6%) D*—l + ?/40*] “'_ D*} +

4-sin® Dy cos Dy {p,* [(— s — 3) D, 2 — /5] -

2t (=12 3 20) - YaDP1Y 4 sin Dy {p* [(s — 3%) Dyt + %D +
+ P2 "2+ 20) Dy —*[uD "1 — D, 2 — /3D %} +
- cos D* {p*4 [(43/8 - 2%) + 1/24D*2] -+ P* [(_—7/2 + 27‘) D*2*1/12D*4]} (1-17)

Let us study the singularities in the behavior of the homogeneous solutions by using

the method of trigonometric series expansions, In the case of a finite hollow cylinder
(I'y : 2 = =4 ) the stress function ¥, ({, ¢) can be sought by putting

sh A6 sin kg
16 @) = ;’0 kzﬂ)H“ {ch Al cos kg

For a cylindrical panel (I, : ¢ = + q,) subjected to a periodic loading with period
lo, we will seek the stress function ¥, ({, ¢) in the form

it h ki@ si
1F2 (C, (P) _ 2 2 Hni* {S ni® Sin nmg <nm =m %) (119)

Sonso chk,;0cosn,g

(1.18)

The H,; and H,;* in (1,18),(1.19) are arbitrary constants, and the Ay; and 4,
some parameters,

Substituting (1, 18) and (1. 19) into (1, 7), we obtain characteristic equations in A,;
and Rz Q (e, — A% Ayf) =0, Q (e, kni®, —n,7) =0 (1.20)

2, Analysis of the roots of the characteristic equation of a
closed cylindrical shell, Let us analyze the roots of the first transcendental
equation in (1,20) as e— (. Let us first examine the case of small & (b <C £77/2). Let
us seek the roots which have a finite limit as ¢ — 0, If such roots exist, then their
limit values A;;, are evidently found from the limit equation

[e2Q (e, —k% Myo®)] [ e=o = U
which has the form 2b,A,;,* = O in the case under consideration, We hence conclude
that (1, 20) determines four vanishingly small roots for every 4 as ¢ — 0. Utilizing this

property for small A,; and &, we write the first equation in (1.20) as (2.1)
€ ok + & [— gkt — 1)2 4 16k, 282 (2 — 1)? + dbghyt (B + 2) -
— 8 thAEE — 1)+ ] et 8RR — D)4+ Y%H 4.1+ ...} =0

From (2. 1) the following asymptotic expansion results
Mo = €%po  Po = Mo T+ i F ERpe s
Mot — 2/ok* (K2 — 1)2yt =0 (2.2)
Min = — *ahgio AR — 1), !
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Miia = Ao [Vsby™ (B2 — 1) (442 — 1) —V/gk? — 13/,,] (cont,)

Taking account of (2,2) and (1, 14), we easily see that A, = () and A; = ( are
exact quadruple roots,

Now, let us assume that all the remaining roots A,; — o0 as ¢ —(, Then, by using
the asymptotic expansions of cylindrical functions of an argument tending to infinity
and with a small index, (1,20) can be given the form

la;® sin (awy;) (sin® (aoy) — (ay)?)] + €*lay; sin® (aou)(t/y — 8x +
+ 4x? — 6k?) — ay;® sin? (aqy;) cos (aay;) (*¥/, + 4 + 6k?) — (2.3)
— ay;® sin (aay) (¥, + 4x — 10k%) + ay? cos (aay;) (%, + 263)] + ...= 0
(aki == 27»;“'8, a = 8_1 sh 8)
The limit relationships «,; — 0, d;; — const and a;; — oo are possible for the
quantity ay; for € =0 and Ay; — oo,
In the tirst case a@;; — 0 for ¢ — (0. Taking account of this property for small @y
and €, we write (2, 3) as
[— Ys0ps® 4 10045™ — " aggotyi™ 4. . .1 4 (2.4)
+ €% [8bgays* +(*/5h® — 4bg) @y +(¥/15by — /15 — Basn — 2k%) ay® +...] +
+ e* [3204 (by + ok®y + B> —EY) + ... 1 +...=0

The following asymptotic expansion results from (2, 4)
My = €72 pry Py = Ogip + EQpy + €%pip + ooy Oio? — Poby =0 (2.5)
Oy = (K% — %/10bg) Opio "
Apip = [(B* — 2/5k"by™ + /510009 — /1% + Yslag

Let us examine the second case ay; —>a* as ¢ — (. Then, as is easy to see from
(2. 3), the a,,;* satisfies the equation
(a0y*)™? sin (aa*) (sin® (aay*) — (a03,;*)) = 0 (2.6)
It should be noted that (2, 6) agrees with the equation governing the index of the
boundary-layer edge effects in slab theory [6]. Equation (2.6) has a countable set of
roots, hence (2, 3) also has a countable set of roots such that Ay e — const as ¢— 0.
Refined values values of the mentioned roots can be obtained by using the expansion

Ao = P 2sh &)™, py, = a2y + €204 + %034+ . .. (2.7)
Oy = (4K 4 4w — 1)(2xy)™' — 8b, (sin 22y — 22))7" (sin®z; — /%) / 1t =0
Do = To + e%01* -+ &%0i* + . .. (2.8)

8io* = (4k* + 15) (2z,)™t, sinzy/ 2y = 0

Let us show that the third case is not realizable, Indeed, it is seen from (2.6) that if
g — 0, then compliance with the asymptotic equality sin (aoy;) (sin? (@a;) —
- (aaz)®) ~ 0 is impossible for a,; tending continuously to infinity.
Turning to the case of average & (£7/2 < k& <C €7!), let us introduce the quantities
A = Ay Ve and kg = kY e. The first characteristic equation (1. 20) becomes in the
new notation
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(2b0}"4 — 4/3A8) + e [_ 8/3A6 . 8/3A4A’2 + (16/3 _ 4b0) AZ}\} + 8/5A10] __’_
+ 82 [(8b0 _i_ 4) }"4 . 4/3A4 — 8/3A2A’2 + 112/45A8 o (16/45 + 32/45.}‘) AG}\F -
— (% — ygbg) ARE — 8 AT £ =0 (2.9)
(AT =42 — ky?)

Seeking A as a power series in € we obtain

2.10
Mg = € (Ay + ehy + €2, + . . D At — wphg — kg2 = 0, %t — 3/2b0( = 0)
A= {Agke® (Vs — by ™) A Yyt A wpke? (Mg — by )} (1 — 2hge )
Ay = (Aol ~'%/ 510000 + */15% — Vs — "y + % ho® (—7% 5150 118/ g5by % —
— byt — ko) + kot (— 81595 — $l1sbo * 4 8/gby72)] - ny [*5be™t +
+ %*ke® (— 5150 4 Hasho % + Yasbyt + Ysby?) 4 kot (— V1505 +
+ 1/4sby 7% + 2/ 5by 7t — obo )] — ighe 020y (=2,
Taking account of the representation of the operator @ in the form (1, 16) for large
values of % (k = €!), the first equation (1.20) can be given the form

[— %D,® + 8/5D11° - 808/9450112 4+ o0+ e [2boP3 +(1%/5 — ) 1 Pa4 +
+ D4 — 8/3ps" — 32/5[’3‘ -+ %%/ 15bops?) + . - J o+ =0
(Dy? = po* — kit by = ek, py = ehy) (2.11)

We hence find
Mi = €71 (pso + €7py -+ epsy + €%pgs + .. ), P’ — K =0
Ppat — by =0, Ps2 = Par> [Mapag™ + pag (aby™t — %) (2.12)
Paz = 1731—1 (/g — 3/49by + Pao2 (— Y1abo ™t = Yoo + */g400b0)]
Formulas resulting from (1, 16) and yielding a good approximation for roots of the type
2.7),(2. 8) when & <C &' are presented below
Ms= (2e) vy + 2ev; + (2e)dvy +- .. ., ky = 2¢ek
(sin®*z; — ) / x* =0, Vol =kt 4 xz,® (2.13)
vy = (sin 22y — 22)7 [Maay®vg ' + Yszyve — vo® 20z, + *am )] +
+ vo [(2 — 200) 7% — Yio] 4 ve® [(— /g + %/m) 2,74 + Mpq 7]
A = (28) e + 2epy + (e)py + .. ., I (2.14)
B = o® [(B/g — 2n) 2g7* 4 Mag@o ®] + o [(— "/ + 20) 257 — /3]

Finally, for very large Ay; and k (5= €7') the roots A,; should be sought from the
asymptotic equation
(sh vy shoyo)™ (1 — €k / hpi® )* (1 — €7 £* [ Ayy®)* Q** sh 6 + O, )= 0
0 =k (thy, — thy, — v, + v2), ch y; = ek / Ay, chy, = e~k | Ay
Q** = 2\,;% [ch2e — ch (y, — y1)] + sh?0 (1 — cth® y;) (1 — cth’yp,) (2.15)
£, = max {Ay;, &}

which results from the representation of the operator ¢ in the form (1,15), and from
asymptotic expansions of the quantities Ly, for large and complex & and A, (see e.g.[7]).
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Lyy = (shy,shy,)~": {sh® 4 k11/, ch 04, 4 ...}
Lyy = (sh y, sh p,)": — {sh 6 + &1/, ch 8 (cthy; — cthy, — cthdy, +
+ cthdp, — A7) +...}

Ly = (sh y, / shy,)”» {— ch® 4 &1/, sh6 (chtdy, — cthy, — A,) + . . .}
Ly, = (sh y; / sh ;)2 {ch 6 + &1/, sh© (cth3p; — cthy, + 4,) + . . .}
(4, = Y, (cthy; — cth y,) — ®/;5 (cth®y; — cth ) (2.16)

We conclude from (2. 15) that the asymptotic equalities
A‘k’i ~ :t kes, A’k’i ~ :I: ke—E for k - 00 (2.17)

correspond to the eight roots A; , and the principal parts of the remaining roots are found
from the equations

0 =2k shei(—1+Yypl+..)=imn (=V—1,m=12..)
Q*¥* = (2A,;she)2 (1 + 92+ ...) +sh?6 (1 + 2y ch2e +...) =0
(Yo =k / Ay (2.18)

which are obtained from (2, 15) by using expansions valid for | yee® | < 1.

The analysis carried out shows that the first characteristic equation (1, 20) contains
three groups of roots,

The first group contains two exact quadruple roots Ay = 0 for & = 0,and A; = 0
for &k = 1.

The second group consists of eight roots determined by (2. 2), (2. 5). (2. 10), (2. 12),
(2.17). The order of the moduli of these roots hence depends on %. If &k << &2, then
the moduli of four of them are commensurate with €/2A® (small roots), and the four other
Toots are commensurate in absolute value with &~z (large roots), For k == £7'/* all eight
roots are commensurate with £ in absolute value, In the case of large and very large
k (k =~ e and k> e7') the asymptotic equalities Ay =~ &= k¥ and Ay ~ +
== £ exp (1&) are valid,respectively,

The third group consists of a countable set of roots determined by (2, 7), (2. 8), (2. 13),
(2.14),(2.18), and growing as 1 / & as ¢ — 0,

3. Analysis of the state of stress and strain corresponding to

each group of roots, Group (1), The stress functions (3.1)
W* (8, q) = T30 + Tl + 118 + (Nyo 4 Nio*e + M8+ My ,*8) e
correspond to the quadruple roots Ay; = 0 and A;; = 0, where T_,, ..., M ,* are

arbitrary constants, and the subscript 1, 2 provisionally denotes a, ;€™ = a, cos ¢ -+
-+ a, sin ¢.
Substituting (3, 1) into (1, 6), and moreover (1.6) into (1, 1-3), we obtain

u = —1,Ra,p; T, v =0, w=—R4T,
o, = Ga,T,, O, = 0y == Tpp = Tpy = Tpo| =0 (3.2)
u =0, v =R {74, w =0

T,p = GplTlv O, = 0 = 0¢p 7= T =— Ty — 0 (33)
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(3.9)

u = Ryt { [xA? 4 bA®] + & [— (c; + ag) APA2 — (T -+ B3/g0) A% +
£ (A2 + Vaay A®) + 1,2 (@ — b)) AR — g, A] + ...} 0V, / 9L

w = Roe ™t {[MB, (£) + %A + %/,A% — txA2R?] + e [AB, () + 3/5A% —
— 1/3b5x4 — (8/3 + 7/6%) A2x2 — 62/45A8 + t (1/3 + 13/6%) A4;\’2 I
— 2w (A2 4 AY) o AP 4 Yetfag A2 4 .. )Y

v = Ry { 1By (t) — % — txA?] & & [B, (2) + Ysbh? — (4, — P/ge) A% —
— A+ (1 — 5/ym) Aty — 12 (Vyu A + bA?) 4 YgtPagAt] 4 . . .} *W, / 0Lop
Too = 267 {INB,y () + Y5 A% — txAB2] 1 ¢ [MB, () + 450t — Yph? —
— 31/ A8 — (2 — 4gx) A2 4 K((Yg + B AT — 2/,AS — xAZy —
— 2 (Yphd - YA + Yy AR] 4. . ) 0%, / G

0, = 2Ge™ {[ABy () — Y/3a_3 A% — bgA? + t{ayA* + (by — 2a,) A*A%] +
+ & [MBy (8) + Ygby A + (/n? — Ysane) APAF A (6 — */gu) At —
— (ep + */05) A% + (Cay (A® — AP — 9/, A%) + (Vsangy — Meb_g) A®A?) +
- 22 (Yyby AZAE — Ykt -+ Yea_, A®) +
+ 83(— Yga, A% + (Yyay — c5) AWNZ] 4 .. L}V, /0T (3.10)

0, = 2Ge™ {[— MB, (t) — 2/3A% — 2t (A* — 2A?A?)] -+ e [— A?B, (¢) +
— Vaby At — YAt - /A — Vg AZA? 4 ¢ (A2 — 2A% + 14/, A8 — Y,a,,AMA) -
+ 2 (A* — 2A%0% - YoxAY) 4 83 (*/5A8 4 Yea gAY + .. Y0¥,/ OC

5, = 2G (* — 1) {[2A%A% + Y/;A% — A* — ¢ (Y3A% + Yga, AN2)] +
+ e [A2 — A% 17/ A6 — 1/ g AR - Ygq  APAE — 31/g A1 4 ¢ (Y A% —
— Ygayg APAT — b oAt + /10 A8 — o APAE) + 12 (Y, A% + Yga_ g ATAE —
— Y3agAPAt — Y1 A10) - 13 (5o A% 4 Ygoao AAD)] 4 . . ) 0¥, / 3E
T, = 2G (8 —1){B, (t) + € [B3 (t) + A% + Y,a,A% — 3/,A% — /12 A6 +
+ t QA% — AY] 4 .. Jo?¥, / 9L dg
T,, = 2G (1 — 1) e {A®B, (t) + & [A2B; () -+ A%A? — A* + 2/;A8 —
— (/g — Ugn) AR® + t(*/3a5 — Ypby) APA* — V30, A% - /gAYy —
—- g2 ASA] + . .}, (3.11)

B, (t) = '3a,A* — thh?, B, (t) = A* 4,8, A%2, By (t) = A® (¢, — Ygt?as) +
+ AR () + c5t?)
By (t) = — 13/1,a9A*A2 4 Yt (At 4 V5 A%) — Y120, A%A?
€ = 2by — 3, ¢ =T/ps — Mogn, €3 =Yg(ay + by)y € = B/ign — By
It follows from (3, 9), (3.10) and (2. 5) that the quantities Uy, ¥, ... Ty Correspond-
ing to the large roots and satisfying the relationships
lul, o, || 0e]|=~ e, | T | =~ €%
lw], |t.,|= &, fo | tl~e2k |0, =~ e (3.12)

decrease as exp (— &7 p**s) (Re p** >> 0) with advancement into the domain
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occupied by the shell, Thus, the solutions corresponding to large roots are edge effects,
whose damping zones will be narrower, the smaller the €.

In the case of roots defined by (2, 10) and commensurate with % (™ C k << &)
the following estimates are obtained from (3. 9), (3, 10):

|u| =~ &3, | v|, |w| =~ ekt | Tz |1 | 02 [ |06 | = €&®
| o, | = e%5, [Tro |y | T rel =~ €73K° (3.13)
Hence, all the characteristics of the state of stress and strain decrease as exp (— ks,).

Therefore, as & increases its corresponding homogeneous solutions become damped all
the more rapidly, For k£ = &! the following solutions correspond to roots defined by
(2.12);
u = Ryge™® {byps® + e/xA® — (cy - ao) A2ps? -+ YstasA® +

+ Y5t (ay — bo) A?pstl + .. .} 0¥,/ 8¢
v=Rae {B* (t) + & [B* (t) — tx A%] 4~ ...} 3°¥, / 0%oe (3.14)

w = Rye™ {pBy* (1) + € [p?By* (£) + Y5AS — twA%p?] + .. .} ¥,
Gz = 2G8—3 {p3gBo* (t) + 81/’ [p32Bl* (t) i 1/3a_.2A.6 + tA.2P32 (bo - 20,2)] _"'

.. 0¥, /0L
0o = 2Ge {— pi'By* (1) + € [— pi®By* (1) — *sA° + 4tA%ps*] +
+ ...} 0¥, /08

To = 2G&™ {pg®Be* (1) + €/ [pgBy* (1) + YA — txA%p;?] + ...} O¥,/0¢
Ty = 26 (2 — 1) e7{ [YV,a,A%p5t] + &' [p2B,* (B)] + ...} ¥, (3.15)

Tro = 2G (18 — 1) &7 {[Y,a,A%ps2) + &= [B* ()1 + ...} 0*¥, / 00
0, = 2G (2 — 1)e7? {[V5A® — YtayA%ps?] + €72 [A? (2ps® + Ysa_yps* —
— 31/ggA®) + tAS (cops® — Ya) — Y5PA® (agpst + YeA®) + Veot*aoAopstl+-

+ ...} 0¥, /d¢

Bo* (t) = l/3a0A4 - tb0p32, A2 = 8—‘/1D12
B* (1) = A® (¢, — Yol?a;) + tA%pg? (c; + cat?) (3.16)

By* (8) = A* (1 — B/1aa4ps®) + Vst (bops* + YsA®) — 1/ atay Atps?

Analyzing the estimating formulas (3, 13), which are also suitable for the relationships
(3.14),(3, 15), it can be noted that for large k (k 2z €') , the homogeneous solutions
(3. 14), (3. 15) are governed, in a first approximation, by the quantities », w, 0,, Ogy Tzos
i.e, correspond to some plane state of stress,

Group (3). If k=T €%, then by expanding the solutions of this group in powers
of the small parameter & and limiting oneself to the first member of the expansion, we
find the following asymptotic expressions :

u = eRyD 2 {sint,Dy [(1 — x — t;) Dy sin®? Dy — Y/, £,Dy? sin 2D,] +
+ cos t,D, [(£,D 2 — %) sin?Dy — /D, sin 2Dyl} ¥, (3.17)
v = 2e?R P, (t,) 0¥, / dg, w = 2e?R;P, (t,) 0¥, / 3%
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6, = GD¢® {sin t,D, [(1 — t,D?) sin®D, + Y/,D, sin 2D,] — (3.18)
—cos {4, [¢,D sin® Dy + Y/,t,D? sin 2D, 1} ¥,
To = eGP, () 0¥, / 0¢, T, = eGP, (t,)0¥, / L,
T = 48°GP, (1)) O*Y, / 8o
o, = G (\SPPy () — ayP; (8) Wiy Op = — G (k,°Py (1) + a,Py ()Y,

Py (t)) = Dy {sin ;D [(t;Ds* — 1 + x) sin? Dy + Y/,D (x — 1) sin 2D] 4
- cos t,Dy [D (¢, — %) sin®Dy + Yyt,D? sin 2D,]}
P, (t;) = DPsin t,D, [2 (1 — &) sin?D, — #,D, sin 2D,] +
+ 24D, sin? D cos t,D,} (3.19)
Ps () = Dg® {sint,D (sin*Dy 4 /,D, sin 2Dg) — D, sin?D, cos t,D,}
D = A — k% Ay = 28hy,  k, =2¢k, t;= (2¢)tlnp,

and the roots Ay; are found by means of (2. 7), (2. 13).
In the case of roots defined by (2. 8), (2. 14), we find the following expressions:
(3.20)

u=0, v=2e"R\,>2cost,D 0¥,/ dp, w = 2e*Rk,? cost,D 0V, /d
T = 282G (k24 A2 cos £,Dy0%Y, / 0009, 0, = — 0, = GA2k,® cos t, DV,
T, = — eGDk,® sin t, DY,/ 08, 1., = — €GD\ 2 sin t,D, d¥, / dp

0, =0 (3.21)
It follows from (3, 17), (3, 18) and (3.20), (3.21) that for small € and % <C &}, the
displacements and stresses corresponding to roots of the third group are subject to the
relationships

lul, |wl=~e, |v|=¢e%, |0 |0 |0 Tl =1, |70 |z | T2e] = &k (3.22)
o] = ek, |w|= &%k, |0y, |0o], |Tr| = %2, .ol [Tre| =~ ek (3.23)

and decrease as exp (— a"lp***sl) (Re p*** > 0) with recession from the boundary
T;. It is important to emphasize that the relationships (3. 17)—(3,21) actually agree

with the homogeneous solutions obtained in plate theory [6].
All the above affords a foundation to conclude that the edge effects of applied shell

theory correspond to the second group of solutions, The third group of solutions yields
the boundary layers which are generally absent in Kirchhoff-Love theory,

4, Analysis of roots of the characteristic equation of an open
cylindrical shell, Utilizing the representation of the operator Q in the form
(1, 14), we easily establish that the second equation (1, 20) reduces for n,, = 0 to

(kni + ky;®)sin2ek,; (sin22ek,; — kpi2sh?2g) = 0 (4.1)

This latter contains two groups of roots:
1) Quadruple roots ky; = O and double roots iy = + i;
2) A countable set of roots growing as 1/ & as ¢ — 0 and defined by the formulas
ko = (2e)Imm (m = 1,2,...), koi = (28) koo + 28k1y + (2€)%ky + ...

(sin2k00 — k002) / koot = 0, ki1 = 1/3’6002 (Sil’l.?koo - 2]&‘00)*1 (42)
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kag = 2/45 Thoo® (Sin2kgg — 2kge) 2 + kog® (5in2hgy — 2kgp) 7] (cont,)

We apply a2 method expounded in the Gol'denveizer monograph [8] to investigate the
roots of the ‘characteristic equation (1.20) when 7, % 0, &— 0,In the case of small
R (M << €7%), we obtain by making the change »,, = &/ r, in (1.20)

[21)07204 - 41/3}"'114 (1 + km:l)'zl + ells/aknl'z (1 + kni:‘.)‘zno'z] + 8"1 [4b0n04 (2 —_ kniz) —

—8lni® (14 Fyi)ne® — Yaskni® (1 + ki) (4~ 93] + o = 0 (4.3)
Hence, as ¢ — 0 the following asymptotic expansion results
km: kmo —‘T' E:knil + €2kni-z e, kn“i()‘;l (1 '{' kniog)e - 3/2170!104 = (44)

ne (14 k)
ntl knio (1 + aniog)

ko= ng? [ bo (13 — 3kp30%) . 1+3km?2 T 3‘1’:nin4 — 2k ]
M2 E L0 (A Fpg) (1 260407) 2(1 4 2k
For medium values of n,, (¢ < n,, < & /%), the substitution k,, = £ *k, reduces
(1.20) to
(Zbon? — 4aky¥) + £ "kaS (—¥a +19/3 nyp?) + ekt (—Ys + 3/on,.* — 8n,,4) -

+ 8% kzz (16/3’27}12 - 4b()nm4 - Snm4 + Vs nm,ﬂ + 8'/5]"'&“) +...=0 (45)
We hence find
hi = €7 (hyp + € hyy A Bhgy 1 8 T hgy b L), By — Habynpt = O
kot = koo 1 (—V4 + Yanp®), hag = kg (Maz -+ 3gnp® — Yen,H) {4.6)
kay == kaq™® [Yass + Meanp? + (a2 — Yapb)ny,t A Vienytl

~1/, - .
In the case of large values of ny, (e *<C n, < €71), we apply the substitution n,, =
=g "2 nyand ky; = e 7 ky. we represent (1,20) in the form (2, 9), wherein we put
A? = k2 — nd, A = —n? Now, expanding A, in a series in &, we obtain

kuy = g (kap + €hg1 + E%gor. )0 hy? — ¥pm — m? — 0
kgr = kag U [—Va A+ Yoy iy o (Ve — ooy 1 ng? — %2by =0
Fyy - Kag™® Wasbe t ~Vaa 4 Yign, ™ (1 beny - %, 2(3 ebg Y Wanpnd gy (Mg
by L - 185y - 1) ngd A (—Vaby T 4 /gy - Visn - ¥ ss00b0) 7t
“x, " (—oby Tt /1 - W azgobo) i) 4.7)
Finally, for #n, = &7}, equation (1.20) can be written in the form (2.11) by virtue
of (1, 16), by putting D = kgt — nd pf = —nd, kg ghpi, M= € (4.8)

Taking account of (4, 8) it follows from (2, 11) that:

kpi = &7 (kg + €% kg + ekyy + £ gy, by — ng* =0
kg* — 3/aby = 0, hyp = hgo® [—"eng ™t 4 ng (Vabgt — #/5)]
hyg = hgo ! [Bleabony ™ + Yagbo -+ ng® (—aebe t + Yoy + Wy100b9) | (4.9)

Furthermore, taking account of the representation of the operator @ in the form (1.16),
it is easy to establish that the second characteristic equation (1, 20), in addition to the
eight roots found above, also has a countable set of other roots for which kpi€ - const
as & — 0. For n,, < €7!, the asymptotic of the mentioned roots can be obtained by uti-
lizing the expansions
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kqi = (2e) 0y 4 2e0y 4 (28)%0, +~ ...
2y isinzg = 0, 0 = n.2+ 2, n, = 2eny, (4.10)

01 = 07102 {n 2 (B/s — 2w)a™* + Yaazo?] + (—7/12 4 )20 — Y12}
ki = (28)wy + 2e0; -+ (280, + ...

(sin2zy — z,2) / ;% = 0, 02 = n,? + 72
@y = @1 {(sin2z; — 225) [Yaz® + Yan 2z — n,H2bezy? + ez )] + 2 (2 —
- 2% 7% — Ypl + n, (1 -+ Sae)a Tt A Ve 2 (4.11)

In the case of very large k,;and n,, (n, >> &™) the roots of (1, 20) should be sought
from the asymptotic equation (2. 15), in which Ay should be replaced by in,, and &
by ik,;. Thus tranformed, it defines eight roots which satisfy the asymptotic equalities

kni = 4 npet, k= ngpe™® for ny — (4.12)

and the principal parts of the remaining roots are found from the equations

6 = 2kpiei (—1 4 Yoy, 2sh2e / 2e -+ /gy, %shde / 4et...) = inm

Q™" = y,%[k,;%sh22e(1 4 y,2ch2e + ...) + sh20(1 + 2y, 2ch2e 4 ...})] = 0
(n=1.2,...,9, = ny/ kns) (4.13)

which are obtained from (2, 15) by using expansions which are valid when |v,¢* | < 1.
Thus the analysis expounded above shows that the second characteristic equation
(1,20) contains three groups of roots, In the first group are the quadruple roots kg = 0
and the double roots ky; = + i defined for n,, = 0. The second group consists of eight
roots defined by (4, 4), (4.6), (4. 7), (4. 9), (4. 12), The order of the absolute values of
these roots hence depends essentially on the quantity n,, For small n,, (n, < e’ the
absolute values of four of them are commensurate with e~"/2n,, (small roots), and the
other four roots are subject to the relationship | k,; | = 1 (large roots), For medium
values of n,, (n,, = 1) all eight roots are commensurate with ¢~/* in absolute value, In
the case of large and very large n,, (n, = 7! and n, > &™) , the relationships
ki = & nyy and k= 4 ngexp (d-e), are satisfied, respectively. The third group in-
cludes a countable set of roots defined by (4.2), (4, 10}, (4, 11), (4, 13) which grow as
1/¢ as e— 0.

6. Analytis of the state of stress and strain of an open cylin-
drical shell, Group (1). The stress function

¥yt (o) = Eag + E@? + B + (Kip + Kia"9)e? (5.1)
corresponds to the quadruple roots ky; = 0and the double roots 4y; = - i, defined for
ny, == 0,where E_j, Ey,..., K,z are arbitrary constants,

Utilizing (5, 1), (1. 6), (1. 1 = 3), we find the displacements and stresses
u==0, v=0, w= R9E,
Ty = GP1T1Ey, Op = 0, = 0= T = T,, =0
u = Ry l{asprt p17Y) a* -+ (2aglnp; — %)p1lE1, v = Ri2upi9E;, w=10 (5.2)

th = 2G [61. (1 + p1—2) "]r‘ 2 (lnpl ‘1“ 1)]E1, G, = 2G [61. ('1 -_— p1~2) + 2lnp1]E1
g, = —2Gay (1 + ¢ + 2lnp)E;, <., =71, = Ty = 0 (5.3)

P

u = Ry [2ay (dilnpy + dop®) — dypr® — dy + dgpy™ —~ i2xdip)K 5% e™®

v = Ri[2as(dhInp; — dypr?) — 3dapy® -+ di — dygpi™2 — i2xdi9liKy e w =0 (5.4)
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0, = 4G (3dyp1 + dipt + dyp ) K 1p ele, T, =0
0, = —4Ga, (dipy™! 4 2d,01)K1,5%e'™”, T =0

Trp = — 10 = 4G (dypr® — dapr™! — dyp1) iK1y (5.5
(er* = dody'Indy,  dyg =1 —dy dy =1 —dy7, dy = dy7? — dp)

It is easy to show that the stress functions (5, 1) correspond to the following elementary
states of stress: (1) pure shear (E,), (2) pure bending by edge moments (&), (3) bending
from the joint effect of a moment and tensile forces applied to the boundary 'y (K1,2%)-

The constants E-; and K., correspond to shell motion as a rigid body.

Group (2). The solutions (3.6),(3.7) in which % should be replaced by ik,
and Po by ing, and the stress function ¥, by ¥, , correspond to roots defined for smalt
i (nm << €7%) by (4.4). The quantities u, v,...,T,, will then satisfy the relationships

Irzqa l =n ms’ ] 5@ l ! I Gz [ ~ kmnmz’ ] 1"7'ap l = &kni?nmg’ | Grl = Skninmz
[ Tz l = Skninma’ I v | =~ kniz’ l u l = knia' ] w I = kninm
(l R = 8_""2nm [ Fns [=1) (5.6)

Therefore, for 7, << &’ the state of stress of an open shell is determined by o, and o,
in a first approximation, and as is seen from (3, 7), is primarily bending. Thus, solutions
corresponding to the eight roots of the second group for n,, << &2 are generalized edge
effects [8], which decrease as exp (—& '*n,,p*s,), where Rey* > O and s, is the angular
distance from the boundary T,.

For medium values of n,, (" < Ry, < e~/ , the roots k,; are determined from (4, 6)
and their corresponding solutions are given by formulas (*)

u = Rye™"/* {—xnk? — elb_yn,? + ...} 0¥,/ 0o

v = R (k2 + £72 (wthy? + 2bon,%) + ..}V,

w = Rg{—x + &/mth,24...}0 2V, / 0Lo9

o, = 2G{e (& — k2 + ...} ¥,/ d¢ (5.7)
Tre = 2G{e" (1 — )P + ...} ¥,
T, = 2G {e (1 — )k - ...} 2Y,/ 3Ldg

0, = 2G {[—bony? — agtht] + &k2[(2a) — bo)npy®t — ayt — Vsasky3l + ...} 0V, / d¢
0, = 2G {[2th,2] + &'7k2 [26(1 + agny?) + skl + ..}0¥, [ ¢
Too = 26 {[nthy* + bony2] + & k2t + bogny?) + Yaaghy*l 4 ...30¥, / 3L (5.8)

The relationships

3 37

lo| = SJ/J”m’ |w]| = g ip Is, |, \3@ | = 3*"'4um5/.»

3
~ g
|u|~¢ n, m

20 | = 0t [T | = e""nm3, It,..] = eé‘ﬂm?‘, [5,] = a')/*nms’l (.9)
result from (5. 7), (5. 8).

Being primarily a bending state, the state of stress (5, 8) hence damps out as
exp (—e in, 2 p**s,) (Rey** > 0). Therefore, the homogeneous solutions correspond-
ing to medium values of #np, (e < ny, < &), are edge effects whose damping zones

[T

*) The solutions (5. 7), (5. 8) can be refined by terms in & and e’s if the relationships
(3.9),(3.10), as well as (3,1), (3. 9) from [1], are utilized,
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will be the narrower, the greater the e iy,

For large values of np, (e ny < £ and ny, =~ £7), the solutions (3. 9), (3. 10)
and (3, 14), (3. 15) correspond, respectively, to the roots defined by (4. 7) and (4, 9), where
k should be replaced by ikpi, Ap; by in,, and ¥; by ¥,. The estimates (3, 13) are
retained for the quantities u, »,...,7., even this time, Hence, all the characteristics of
the homogeneous solutions (3, 9), (3.10) and (3, 14), (3, 15) decrease as exp (—npys),
including the components of both the bending and the membrane states of stress,

Group (3). Presented below are exact solutions of the third group for 7, = 0.

u=0, v=0, w = Ricosn¥,, o0,=0,=0,=0

T, = —Gptsinn¥y, T = Gprteosn 'y, Tre = 0 (5-10)
The ky; in (5. 10) are roots of the equation sin2eky; / 2eky; = 0

u=Rip[(2x —1)C," — E ' + p1~%y;K '] ¥, w=20

. 511
v= Rlpl [(1—2}() CT]_ Eﬂ+pl_2koil\n] ‘Fg'/koi, Trz:‘tzqo:—o ( )
To=26(— B,/ + o H )Wy,  6,=2G (2E, — ky;E, + pr %y H,) Ve 6.12)
6, =2G (2B, + ky B —prkyH ) ¥e, o, = — 4GasE ¥ ’
Cn = —(cosm + ko sinv) 4= R,/ Ri[cos(n — 81) + kg sin (n — 0,)4
K, = —(Ry/ R)?(sinn + kg cosm) 4= Ry / Ry [sin (1 — 61) + kg cos(n — 6,)]

E,=C,+kuyC,, H,=K/+kyK, n=kylnp, 0=2eky;  (5.13)
The primes here denote differentiation with respect to vy and ¢, and ke are the non-
zero roots of the equations sin2eky; 4 ky; sh2e = 0. In the case when 0 < ny, << €71, the
homogeneous solutions are given in a first approximation by (3, 17), (3. 18) and (3, 20),
(3.21) in which the quantities &, Ap; and ¥, are replaced by ik,;, in,,, ¥,,Iespectively,
and therefore, the behavior of solutions of the third group of a cylindrical panel are the
same as the analogous solutions of a hollow cylinder,

6., Construction of refined applied theories for circular cylin-
drical shells, Asisseen from (3.1)- (3. 9) in [1], the homogeneous solutions (1, 1)~
—(1. 3) can be represented in three forms

(uy O—;py Grv 02) = (Qllv Q217 9311 Qﬂl)pl}r’ Tz;p = QSlaQ\FL

(1'1 Tr:p) = (9611 Q71)}782‘{!.1 (wr Trz) = (9817 991)1{I J (6'1)
(¥, gg» Ty 0;) = (Q1g, Qg5 Qgay 22)05 7, T = QazP‘P}
(z, Trq;) = (9621 972)1?.’ (w, 1:rz) = (932’ 992)62PW (6‘2)
(u, Ot T g,) = (R3, Q25 Qg3 Q). ¥, T = 95362p‘1’} (6.3)
(v, Tr;p) = (Qq3, Q23)0, 7, (w, T,,)= ( Q83 293)p ¥

Here (u, 0 ,...) = (Qi3, Qg4,...)¥ denotes the system of equalities u = Q¥ 0, =
= Q,3¥,..., and the quantities Q. are integer operator functions of D?, p?, & and Inp,
representable by series of the following form:

[ee] [ee]
k CRR ey 2 2 .
Q/}L = Z & Q/}Lh‘ (L7, p% 1), Q/LL: 2 & Q/UI:(D*" Y (6.4)

k=0 h=0

where the operators Q. and Q* ., are of the type (1. 12) and (1, 17).
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Therefore, if the stress function ¥ hag an index of variability p° < e (p° =
= max {k, ny, |knils {Agi]3), then by keeping a sufficient number of terms in the series
{6, 1)~(6.4), a series of applied theories of cizcular cylindrical shells can be constructed
which have any previously assigned accuracy in e. Hence, by having the solutions of the
third group, the boundary conditions can be satisfied more accurately than in the integ-
ral sense [9, 10], In this case a system of algebraic equations in H,; and H,,," is obtained,
which separates asymptotically, for small e, into one eighth order system and two count-
able infinite order systems (see e. g, [3]), These latter have been studied in [6, 11], and
are solved effectively by the method of reduction,

As regards the constraint imposed on the index of variability p°, it is insignificant
since such theories are intended to reduce smoothly varying external loadings applied
to the boundary I',. The relationships herein are given as a specific refined applied the-
ory. Together with the relationships (3. 1), (3. 9) from [1], the proposed theory yields an
error on the order of g2 as compared with unity, if p° <. &2, and an error on the order
of & if p° =~e™1 , and can be utilized 10 check the accuracy of existing applied theories,
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